Портал аналитической химии

Методики, рекомендации, справочники

Извлечение металлов и неорганических соединений из отходов - 0161
Он-лайн библиотека - Извлечение металлов и неорганических соединений из отходов



< Назад 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 Вперед >

ОГЛАВЛЕНИЕ

Макет страницы

 

 

твор используется для повторного получения обогащенного концентрата, как это описано выше.

В предпочтительном варианте процесса жидкая фракция после стадии разделения 10 первоначально подвергается обработке для осаждения алюминия (стадия //), после чего проводится разделение жидкости и твердого остатка 12. На стадии 11 алюминий осаждается в виде алюмината кальция. Кальциевое соединение добавляется к жидкости после операции 10 в виде известкового молока или гидроксида кальция, обычно в количестве, в 1—2 раза превышающем стехиометрическое. Значение рН должно поддерживаться ~11 для предотвращения осаждения галлия. Температура должна составлять 60—100 °С. Смесь перемешивается в течение 2 ч или более для полного завершения реакции и затем подвергается разделению на стадии 12. Твердый остаток отделяется и промывается, затем выводится из процесса; раствор галлата обрабатывается в осадителе 13 для получения обогащенного гал-лиевого концентрата, после чего проводится разделение на стадии 14 так же как описано выше.

Обогащенный концентрат, содержащий например 20 % галлия, аккумулирует 70—90 % галлия, присутствовавшего в исходной пыли. Обогащенный концентрат далее используется для получения металлического галлия.

В третьем варианте процесса исходная пыль обрабатывается как описано выше для получения обогащенного галлиевого концентрата, после чего он растворяется на стадии 15 в щелочном растворе. Можно также разбавить концентрат водой и добавить твердую щелочь. Растворенный концентрат подвергается электролизу 16, который проводится в соответствии с известной технологией.

После выделения металлического галлия электролитический раствор может возвращаться на стадию 9. В случае необходимости часть электролита может подаваться на стадию 15, как показано прерывистой линией иа^рис. 63.

Выделенный описанным способом металлический галлий имеет чистоту около 99 %, основной примесью является цинк. В случае необходимости галлий подвергается дальнейшей очистке для получения особо чистого металла, используемого в электронике.

ГЕРМАНИЙ из колошниковой пыли

ЦИНКОВЫХ ПЛАВИЛЬНЫХ ПЕЧЕЙ

Производство германия в качестве побочного продукта описано А. Петриком, X. Дж. Беннетом, К. Е. Старчем и Р. С. Вайснером 117]. Сведения, касающиеся германия, содержатся в статье А. П. Томпсона и Дж. Р. Мусгрейва (J. Metal, 4, 1132—37, ноябрь 1952).

Наиболее целесообразным является выделение германия при переработке германийсодержащего осадка, получаемого при высаживании цинковой пылью и отделяемого от кадмийсодержащего раствора. Производство германия может рассматриваться в качестве побочного процесса получения кадмия, если получение кадмия является основным процессом.

Схема иа рис. 64 основана главным образом на данных статьи Томпсона и Мусгрейва, напечатанной в 1952 г. Принципиально процесс ие изменен, только использованы некоторые дополнительные технические данные из современной практики. Процесс, в соответствии с рис. 64, начинается с улавливания германиево - и кад-мийсодержащих дымов, образующихся в процессе обжига и плавления при переработке рудных концентратов на основе сульфида цинка.

Подсистема выделения германия формируется на стадии, когда после первичной обработки дымной пыли германийсодержащий осадок отделяется от кадмийсодержащего раствора. Частичное осаждение соединений из раствора достигается путем добавления к нему цинковой пыли в количестве достаточном для высаживания меди и германия без выделения соединений кадмия.

Другие примеси, например мышьяк, также осаждаются вместе с медью, и германием. С этого момента дальнейшая обработка осадка с содержанием германия 1 % всегда протекает одинаково независимо от его происхождения — из отходов или колошниковой пыли производства цинка или из золы, получаемой при сгорании

6 Ситтиг М.

161

 

Сейчас на сайте

Сейчас 113 гостей онлайн

Методы исследования

Определяемые объекты

Аналитическая химия

На заметку

You are here: